

CANDU Safety #2 - Risk from Nuclear Power Plants

Dr. V.G. Snell Director Safety & Licensing

24/05/01 8:18 AM

CANDU Safety - #2 - Risk from Nuclear Power Plants.ppt Rev. 0 vgs

1

What is the Public Hazard?

- λ chemical? Chlorine for water treatment as in fossil plants
- λ biological? None
- λ physical? Nuclear explosion impossible
- λ radiological? Small risk of delayed health effects, very small risk of prompt health effects, even in severe accidents

The Chernobyl Disaster

More than 12,500 of the 350,000 people who worked on the Chernobyl cleanup have since died

For a population of the age and sex distribution of the "liquidators" in 1986, the normal mortality rate was 3 per 1000 per year. Thus the "expected" number of deaths would be:

350,000 people x 12 years x 3/1000

= 12,600

- The number should be larger (by 50%) because the normal rate of 0.3% increases as the group ages
 - Is reporting inadequate? Does monitoring improve the life expectancy of the liquidators?

Effects of Radiation

- **λ** prompt health effects (deterministic, non-stochastic)
 - dose of >1 Sv: illness
 - dose of >3 Sv: increasing risk of death (LD 50 is 3 to 10 Sv)
- **λ** delayed health effects (random, stochastic)
 - risk of cancer
 - **λ** 0.25 Sv gives approx. 0.5% increase in individual risk
 - risk of damage to foetus
 - risk of genetic damage
 - $_{\lambda}$ not observed in humans

EXAMPLES OF RADIATION DOSE

	÷	1	:	1	:	
0.0	00001	Max. in Canad	a, banned foo	d		
0.0	0003	Typical from C	CANDU			
0.0	0083	Maximum, Thr	ee Mile Island			
0.0	02	Natural, in Tor	onto, /yr.			
0.0	05	Accident limit	in CANDU (sir	ngle failure)		
0.0	1	Natural, in Kei	rala, /yr.			
0.	25	Severe Accide	ent limit in CAN	NDU (dual fa	ilure)	
	1	Nausea				
		Firefighters at	Chernobyl		10	
0	2	4	6	8	10	Dose (Sv

What Is Risk?

Risk = Frequency of an event x consequences of the event

- **λ** Examples of risk:
 - annual individual risk of death
 - annual nuclear plant risk of core damage
 - annual nuclear plant risk of a large release of radioactivity
 - risk of psychotic reaction to malaria drug, per dose

Safest and Most Dangerous Occupations*

Occupation	<i>Fatalities / 100,000 / year</i>
Administrative support, clerical	1
Executive & Managerial	3
News Vendors	16
Police	17
Truck drivers	26
Farm Workers	30
Construction labourers	39
Miners	78
Pilots & navigators	97
Lumberjacks	101
Sailors	115

*US, 1995

"Acceptable" (since accepted) Occupational Risk?

5 per 100,000 per year (5 x 10⁻⁵ per year) to 100 per 100,000 per year (1 x 10⁻³ per year)

Non-Occupational Accidental Fatalities*

Accident	<i>Fatalities / 100,000 / year</i>
Lightning	0.06
Poisoning	1.5
Firearms	1.1
Drowning	3.6
Fires	3.6
Falls	8.6
Motor vehicle	27

*US, 1970

"Acceptable" (since accepted) Public Risk?

4 per 100,000 per year (4 x 10⁻⁵ per year) to 27 per 100,000 per year (3 x 10⁻⁴ per year)

Total risk of accidental death = 4 x 10⁻⁴ per year

Note that these are population-average risks Some groups will be considerably more (or less) at risk than others.

Many Factors Determine "Acceptability"

- **λ** occupational risk vs. public risk
- λ presence of offsetting benefit
- **λ** voluntary vs. involuntary risk
 - can one really eliminate risk from motor vehicles by not driving??
- **λ** "dread" factor (cancer vs. automobile accident)
- λ perceived ability to control risk
- knowledge and familiarity (coal mining vs. operating nuclear plant)

Safety Goals for Nuclear Power Plants

- **λ** Safety goal an acceptable value of risk
 - risk from NPPs chosen to be very small in comparison to comparable activities

Risk of fatal cancer *just* from "natural" radiation in Canada = 0.002Sv/year x 0.02 cancers/Sv = 4 x 10⁻⁵ per year (according to linear dose-effect hypothesis)

Risk Goals

The only significant health effects from a nuclear power plant are from a large release

A large release can only occur if: 1) There is severe core damage, *and* 2) The containment does not work or is damaged

Nuclear safety goals therefore focus on: 1) preventing a large release 2) preventing severe core damage

Example #1

- **λ** Three Mile Island
 - severe core damage (~20 tons of molten fuel)
 - the pressure vessel was thinned but did not fail
 - the containment was not damaged but some liquids and gases escaped through lines which bypassed the containment
 - public health effects were minor: ~1 additional (statistical) cancer case in the surrounding population

Example #2

λ Chernobyl

- the core was severely damaged due to a reactivity increase which was made *worse* by the shutdown systems
- the containment was ineffective as the steam explosion blew off the top cover of the reactor & exposed the core
- about 32 prompt fatalities among station staff
- most volatile fission products were released to atmosphere
- public health effects: predict several thousand (additional) cancer cases in the surrounding area
- an increase in thyroid cancers in children has been observed (mostly curable)

Numerical Safety Goals for Nuclear Power Plants

- **λ** For existing nuclear power plants:
 - risk of a severe core damage accident must be < 10⁻⁴ per plant per year
 - risk of a large release must be < 10⁻⁵ per plant per year
- **λ** For new nuclear power plants:
 - factor of 10 lower on both counts
- **λ** the factor of 10 must therefore come from:
 - severe accident management & mitigation procedures
 - residual containment effectiveness

How is Risk Calculated?

- **λ** For frequent events easy just collect the *observed* statistics
- For rare events build up from combinations of more frequent components
- a.g., risk / year of plane crash on Shanghai University = risk of a plane crash per kilometer of steady flight
 - x number of flights / year landing or taking off from Shanghai airport
 - **x** fraction of flights which fly over the University
 - x diameter of University in km.
 - does not account for evasive action, skyjacking

Fault trees and Event trees

- λ to determine the risk from rare events:
 - calculate frequency or probability of a system failure (fault tree)
 - calculate consequences of the system failure (event tree)
 - in the event tree, assume each mitigating system either works or fails; if it fails, account for the probability of failure
- A end result is the frequency or probability and consequences of a family of events

Douglas Point

- an early risk assessment in Canada in the 1960s for the first prototype CANDU
- λ goal: risk from nuclear power plant must be 5× less than coal
- > only prompt effects well known then, so compared prompt fatalities from mining and nuclear power
- k e.g., large release frequency = initiating event frequency × unavailability of shutdown × unavailability of containment
- **λ** must set targets for & *measure*:
 - frequency of initiating events (process system failures)
 - unavailability of each safety system

Frequency and Reliability Targets

- **λ** process system failures:
 - must be less than 0.3 events / year
 - deliberately chosen high so it could be confirmed
- **λ** safety system unavailability:
 - each must be less than 10⁻³ years / year (8 hours / year or 1 failure in 1000 tries)
- λ can one multiply the numbers?
 - e.g., small LOCA + LOECC + containment failure to isolate
 - = 10^{-2} / year \times 10^{-3} years/year \times 10^{-3} years / year
 - $= 10^{-8}$ / year ???
- λ only if there are no cross-links

24/05/01 8:18 AM